SYNTHESIS OF DISUBSTITUTED 6-CHLORO-5-METHYL-4*H*-1,4-BENZO-THIAZINES: NOVEL HETEROCYCLES

Ram K. RATHORE^{*a*} and Radha R. GUPTA^{*b*}

CH3

^a Central Forensic Science Laboratory,
Government of India, Sector 18A, Chandigarh-160 018, India
^b Chemistry Department,
Rajasthan University, Jaipur, India

Received March 6, 1995 Accepted July 17, 1995

4H-1,4-Benzothiazines resemble structurally phenothiazines and possess a wide spectrum of biological and pharmacological activities¹. In continuation to our research project (e.g. ref.²) concerning development of heterocyclic pharmaceuticals, we report here on the synthesis of 6-chloro-5-methyl-2, 3-disubstituted 4H-1,4-benzothiazines. For that purpose we used well-known³ one-pot cyclocondenzation reaction of 2-amino-4chloro-3-methylbenzenethiol (*I*) with 1,3-dicarbonyl compounds *II* (Scheme 1) in dimethyl sulfoxide. 4H-Benzothiazines *III* were formed in moderate yields.

СН₃

H

 R^1

COR²

NH, HO COR² SH Π I III R^1 \mathbb{R}^2 II, III CH₄ OCH₃ a ь OC₂H₅ CH₃ CH_3 C₆H₅ С d. CH₃ 4-CIC₆H₄ 4-CH₃C₆H₄ CH₃ e CHf CH₄ C₆H₅ C₆H₅ g h CH₃ 4-BrC₆H₄

Scheme 1

The IR spectra (Table I) of the compounds *III* exhibited a single intense peak in the region 3 410–3 320 cm⁻¹ which corresponded to v(NH). The sharp band in the region 1 680–1 590 cm⁻¹ was attributed to v(CO). All compounds contain methyl group at C-3 position and exhibited sharp bands in the region 1 470–1 420 cm⁻¹ and 1 370–1 320 cm⁻¹ due to C–H asymmetric and symmetric deformation vibrations. The absorption bands in the region 780–720 cm⁻¹ were assigned to C–Cl vibration.

The ¹H NMR spectra (Table II) of all 4H-1,4-benzothiazines *III* have $-C=C-CH_3$ grouping which exhibited resonance signals (singlets) in the region 2.31–2.97 ppm. A singlet in the region 8.49–9.10 ppm was assigned to NH proton in all compounds.

EXPERIMENTAL

Melting points are uncorrected. The purity of the samples was checked by thin layer chromatography using silica gel plates and acetone–benzene (1 : 3, v/v) as solvent system. IR spectra of the compounds were scanned in KBr discs on Perkin–Elmer 577 spectrophotometer. The ¹H NMR spectra were recorded at 90 MHz on Jeol FX 90Q FT NMR spectrometer in CDCl₃ solution using TMS as an internal standard. Mass spectra of all the compounds were recorded on Jeol JMSD-30Q mass spectrometer at 70 eV.

(3-Chloro-2-methylphenyl)thiourea

3-Chloro-2-methylaniline (14.15 g, 0.1 mol) was added to a mixture of concentrated hydrochloric acid (9 ml) and water (25 ml), and refluxed for about half an hour. The solution was allowed to cool and ammonium thiocyanate (8 g, 0.1 mol) was added. The reaction mixture was then refluxed for 4 h. The solid separated out on cooling was filtered, washed with water, dried and recrystallized from ethanol, m.p. 175 °C, yield 17.02 g (85%). For $C_8H_9ClN_2S$ (200.7) calculated: 47.88% C, 4.52% H; found: 47.75% C, 4.43% H.

2-Amino-5-chloro-4-methylbenzothiazole

3-Chloro-2-methylphenylthiourea (20.05 g, 0.1 mol) was dissolved chloroform (100 ml). Bromine (8.0 g, 0.1 mol) in chloroform (80 ml) was added dropwise with stirring. The temperature of the reaction mixture was maintained below 5 °C. After the complete addition of bromine the stirring was continued for half an hour and the reaction mixture was refluxed till the evolution of hydrogen bromide ceased. Chloroform was removed by distillation and resulting solid material was treated with aqueous sulfur dioxide solution and filtered. The filtrate was neutralized with aqueous ammonia and the precipitate was recrystallized from ethanol, m.p. 205 °C, yield 15.84 g (80%). For $C_8H_7CIN_2S$ (198.7) calculated: 48.36% C, 3.52% H; found: 48.22% C, 3.45% H.

2-Amino-4-chloro-3-methylbenzenethiol (I)

2-Amino-5-chloro-4-methylbenzothiazole (19.85 g, 0.1 mol), sodium hydroxide (80 g, 2 mol) and water (200 ml) were refluxed until the evolution of ammonia gas ceased. The reaction mixture was dilluted by cold water and filtered. The filtrate was neutralized by 5 M acetic acid and the yellowish precipitate was extracted with ether, evaporated and crystallized from ethanol. The formed compound *I* had m.p. 91 °C,, yield 9.86 g (57%). For C_7H_8CINS (173.7) calculated: 48.41% C, 4.61% H; found: 48.30% C, 4.55% H. IR spectrum (cm⁻¹): 3 455, 3 365 (NH₂); 2 350 (SH); 1 435, 1 360 (CH); 750

2210

(CCl). ¹H NMR spectrum (ppm): 7.82–6.46 m, 2 H (arom.); 4.05 s, 2 H (NH₂); 2.21 s, 3 H (CH₃); 1.37 s, 1 H (SH).

6-Chloro-5-methyl-4H-1,4-benzothiazines III. General Procedure

Corresponding β -diketone or β -keto ester *III* (0.01 mol) was added to the stirred suspension of 2-amino-4-chloro-3-methyl benzenethiol (*I*, 1.73 g, 0.01 mol) in DMSO (5 ml) and heated for 10–15 min. The

Compound _	$\tilde{v}, \mathrm{cm}^{-1}$					
	NH	СО	СН	C–Cl		
IIIa	3 370	1 620	1 490, 1 340	750		
IIIb	3 400	1 630	1 450, 1 360	780		
IIIc	3 410	1 600	1 480, 1 340	740		
IIId	3 390	1 680	1 480, 1 320	770		
IIIe	3 320	1 590	1 490, 1 340	720		
IIIf	3 360	1 590	1 440, 1 360	760		
IIIg	3 320	1 595	1 470, 1 355	745		
IIIh	3 340	1 620	1 480, 1 365	755		

TABLE I IR spectral data of 4*H*-1,4-benzothiazines *III*

TABLE II ¹H NMR spectral data (δ , ppm) of 4*H*-1,4-benzothiazines *III*

Compound	NH ^a	arom. ^b	3-CH ₃ ^{<i>a</i>}	5-CH ₃ ^{<i>a</i>}	Other protons
IIIa	9.10	7.44–6.11	3.01	2.66	4.08 s (CH ₃)
IIIb	8.92	7.48–6.91	2.38	2.17	4.10–3.90 q (CH ₂); 1.40–1.23 t (CH ₃)
IIIc	8.55	7.92–7.00	2.53	2.15	_
IIId	8.54	8.11-7.22	2.56	2.21	_
IIIe	8.49	8.08-7.32	2.63	2.31	2.85 s (CH ₃)
IIIf	8.71	8.24-7.29	2.31	1.74	2.69 s (CH ₃)
IIIg	8.93	7.69–6.60	_	2.35	_
IIIh	8.87	7.44-6.05	2.97	2.59	_

^a Singlet. ^b Multiplet.

2212

reaction mixture was cooled to room temperature and the separated solid was filtered and recrystallized from methanol. The physical and analytical data are given in Table III.

TABLE III

Physical and analytical data of 4H-1,4-benzothiazines III

Compound	Formula (M.w.)	M.p., °C Yield, % —	Calculated/Found		
			% C	% H	% N
IIIa	C12H12ClNO2S	112	53.43	4.45	5.19
	(269.15)	68	53.35	4.41	5.15
IIIb	C ₁₃ H ₁₄ ClNO ₂ S	185	55.02	4.93	4.93
	(283.5)	69	54.90	4.91	4.90
IIIc	C ₁₇ H ₁₄ ClNOS	166	64.65	4.43	4.43
	(315.5)	44	64.55	4.38	4.39
IIId	C ₁₇ H ₁₃ Cl ₂ NOS	120	58.28	3.71	4.00
	(350.0)	63	58.19	3.65	3.94
IIIe	C ₁₈ H ₁₆ ClNOS	136	65.55	4.85	4.24
	(329.5)	50	65.44	4.79	4.26
IIIf	C ₁₂ H ₁₂ ClNOS	110	56.80	4.73	5.52
	(253.5)	64	56.75	4.71	5.48
IIIg	C22H16CINOS	64	69.93	4.23	3.70
	(377.5)	55	69.85	4.18	3.75
IIIh	C ₁₇ H ₁₃ BrClNOS	145	51.71	3.29	3.54
	(394.5)	61	51.66	3.25	3.51

We are grateful to the Head of the Chemistry Department for providing research facilities. Thanks are due to Regional Sophisticated Instrumentation Centre, Lucknow for providing IR and mass spectra.

REFERENCES

- 1. Gupta R., R.: *Phenothiazines and 1,4-Benzothiazines Chemical and Biomedical Aspects.* Elsevier, Amsterdam 1988, and references therein.
- 2. Rathore R. K., Gupta V., Jain M., Gupta R. R.: Indian. J. Chem., B 32, 370 (1993).
- 3. Miyano S., Abe N., Sumoto K., Teramoto K.: J. Chem. Soc., Perkin Trans. 1 1976, 1146.